4.4.4 Depth-first Search Trees

The edges that lead to new, i.e., unmarked, vertices during a depth-first search of a

oraph or digraph G form a rooted tree called a depth-first search tree. If not all of
the vertices can be reached from the starting vertex (th

raversal of G partitions the vertices into several trees.
search provides an orientation for each of its edges; they
in which they are traversed. (If G is directed.
direction of their preassigned orientation.)

€ 1oot), then a complete
For an undirected graph, the
are oriented in the direction
its edges may be traversed only in the

We say that a vertex v is an ancestor of a vertex w in a tree if v is on the path
from the root to w; v is a proper ancestor of w if v#w. If vis a (proper) ancestor of
w.then w 1s a (proper) descendant of v.

An edge of G that is traversed from a vertex to one of its ancestors in a depth-
first search tree is called a back edge. If G is undirected, each of its edges will be a
ee edge or a back edge. If G is a digraph, depth-first search partitions its edges into
several classes: tree edges, back edges, edges that go from a vertex to one of its des-
cendants other than a child, and edges called cross edges between two vertices such
that neither is a descendant of the other. See Fig. 4.24 for illustrations. Note that
the head and tail of a cross edge may be in two different trees. The r"eader should
Prove that there can be no cross edges or descendant edges if G 1s undlre‘cteu‘i. The‘
distinctions between the various types of edges are imp(?rtum ixj some ;1pp1hcanons of
depth-first search — in particular, in the algorithms studied in Sections 4.5 and 4.0

44.5 A Generalized Depth-first Search Skeleton

. oant sfhcient algonthms.

bﬁmhﬁm search provides the structure for many elegant and ‘m;‘“m :L\ < first

c A Al times: *overtex 1s s

A depth-ﬁrSt search encounters each vertex several times: whc‘nll S c[.m R

i ' . «h tree. then several more times whe

Visiteq | . depth-first search tree, then s¢ Salh

and becomes part of the depth-lirst 5¢ in a different direction, and

he search back pm it and attempts O branch out 1 a dttuc f o e

. dCKs U ¢ ¢ ' L wearch backs up from the vertex

Mally, after the]usrt) of these encounters, when the search h“- [%Qwellxiil\«‘ on the
Nd (oeq | h I‘ it or any ol 118 descendants agan. - Le 5

-5 not pass through 1 :

182 Graphs and Digraphs 1

(a) l

//K - |
To B . fr

’I '..

] N ‘

S DD)

To G
— ———————— ~AAAN q° ° 0 s 05 0 0
Tree edge Back edge Cross edge Descendant edge

(b)
Figure 4.24 (a) A digraph. (b) Depth-first search trees for the digraph.

problem to be solved, an algorithm will process the vertices differently when they
are encountered at various stages of the traversal. Many algorithms will also do
some computation for the edges: perhaps for each edge, or perhaps only for edges in
the depth-first search tree, or perhaps different kinds of computation for the different
kinds of edges. The following skeleton algorithm shows exactly where the pro-

cessing would be done for each kind of edge and for each kind of encounter with the
vertices.

Algorithm 4.8 General Depth-first Search Skeleton

Input: G =(V, E), a graph or digraph represented by the adjacency list structur®
described in Section 4.1.2 with V = {1,2,..., n).
var
mark: array[VertexType] of integer;

markValue: integer;
procedure DFS (v: VertexType);

{ Does a depth-first search beginning at the vertex v marking
the vertices with markValue. | ’

¥

4.4/Traversing Graphs and Digraphs 183

var
“i: V(’l'f(’.\'Typl’ r-

ptr: NodePointer,
begin
{ Process vertex when first encountered (like preorder). |
mark[v] := markValue;
ptr = adjacencyList[v];

while ptr # nil do
w = ptrT.vertex;

{ Processing for every edge.
(If G is undirected, each edge is encountered

twice; an algorithm may have to distinguish the
two encounters.) |

if mark[w]=0 { unmarked } then

{ Processing for tree edges, vw. J

DFS(w);
{ Processing when backing up to v (like inorder))
else
{ Processing for nontree edges.
(If G is undirected, an algorithm may have
to distinguish the case where w is the
parent of v.) }
end { if };
ptr := ptrT.link
end { while };

{ Processing when backing up from v (like postorder) }

end | DFS }

For an exercise, the reader should write an algorithm to determine if a graph
(undirected) has a cycle. (This will require distinguishing between a nontree edge
and an encounter with a tree edge “backwards,” i.e., from a vertex to its parent.)

In some applications of depth-first search, we may need to know which ver-
tices are on the path from the root to the current vertex (v). They are exactly the ver-
lices that are on the stack. For some algorithms we need to know the order in which
Yertices are encountered for the first time. We can simply number the vertices as
hey are encountered by incrementing markValue. The number assigned to a vertex
M this way is called its depth-first search number.

184 Graphs and Digraphs

4.5
Biconnected Components of
a Graph

-
4.5.1 Articulation Points and Biconnected Componentg

In Section 4.1 we raised these questions:

If one city’s airport is closed by bad weather, can you still fly between any
other pair of cities?

If one computer in a network goes down, can messages be sent between any
other pair of computers in the network?

In this section we consider undirected graphs only. As a graph problem, the question
1s:

If any one vertex (and the edges incident with it) is removed from a connecteg
graph, is the remaining subgraph still connected?

This question is important in graphs representing all kinds of communication or
transportation networks. It is also important to find those vertices, if any, whose
removal can disconnect the graph.

Formally, a vertex v is an articulation point (also called a cutpoint) for a graph
if there are distinct vertices w and x (distinct from v also) such that v is in every path
from w to x. Clearly, the removal of an articulation point would leave an uncon-
nected graph, so a connected graph is biconnected if and only if it has no articulation
points. A biconnected component of a graph is a maximal biconnected subgraph,
that is, a biconnected subgraph not contained in any larger biconnected subgraph.
Figure 4.25 illustrates biconnected components. Observe that, although the bicon-
nected components partition the edges into disjoint sets, they do not partition the ver-
tices; some vertices are in more than one component. (Which vertices are these?)

There is an alternative characterization of biconnected components, in terms of
an equivalence relation on the edges, that is sometimes useful. Two edges ¢ and ¢’
are equivalent if e = ¢’ or if there is a cycle containing both e and e’. Then each
subgraph consisting of the edges in one equivalence class and the incident vertices
a biconnected component. (Verifying that the relation described is indeed af
equivalence relation and verifying that it characterizes the biconnected components
are left as exercises.)

The applications that motivate the study of biconnectivity should suggest
dual problem to the reader: how to determine if there is an edge whose removal
would disconnect a graph, and how to find such an edge if there is one For
example, if a railroad track is damaged, can trains still travel between any pair of S
tions? Relationships between the two problems are examined in Exercise 4.40.

The algorithm we will study for finding biconnected components Us¢
depth-first search skeleton of Section 4.4.5 and the idea of a depth-first search lffe
from Section 4.4.4. During the search, information will be computed and save 50

S the

4.5/Biconnected Components of a Graph 185

-
(a) (b)

Figure 4.25 (a) A graph. (b) Its biconnected components.

that the edges (and, implicitly, the incident vertices) can be divided into biconnected
components as the search progresses. What information must be saved? How is it
used to determine the biconnected components? Several wrong answers to these
questions seem reasonable until they are examined carefully. Two edges are in the
same component if they are in a cycle, and every cycle must include at least one
back edge. The reader should work on Exercise 4.32 before proceeding; it requires
looking at a number of examples to determine relationships between back edges and
biconnected components.

From now on we will use the shorter term “bicomponent” in place of “bicon-

nected component.”

45.2 The Bicomponent Algorithm

Processing of vertices may be done when a vertex is first visited, when the search
backs up fo it, and/or when the search backs up from it. The bicomponent algorithm
lests to see if a vertex in the tree is an articulation point each time the search backs
Up to it. Suppose the search is backing up to v from w. If there is no back edge
from any vertex in the subtree rooted at w to a proper ancestor of v, then v must be
On every path in G from the root to w and is therefore an articulation point. See Fig.
4-26 for illustration. (The careful reader will note that this argument is not valid if v
S the root.) The subtree rooted at w, along with all back edges leading from it and
dlong with the edge vw, can be separated from the rest of the graph at v, but it is not
ﬂﬁcessarily one bicomponent; it may be a union of several. We ensure that bicom-
Ponents are properly separated by removing each one as soon as it is detected. Ver-
[fCCS at the outer extremities of the tree are tested for articulation points before ver-
tices ¢loger to the root, ensuring that when an articulation point is found, the subtree

186 Graphs and Digraphs

One or more
bicomponents

Figure 4.26 An articulation point v in a depth-first search tree. Every path from the
root to w passes through v.

in question (along with the additional edges mentioned above) forms one bicom-
ponent.

This discussion suggests that the algorithm must keep track of how far back in
the tree one can get from each vertex by following tree edges (implicitly directed
away from the root) and certain back edges. This information will be stored in an
array back. The vertices will be numbered in the order in which they are first
visited. These numbers, stored in an array dfsNumber, replace the marks used ear-
lier. Values of back will be these vertex numbers. For a vertex v, back[v] may be
assigned (or modified) when the search is going forward and a back edge from v is
encountered (as in Fig. 4.27(b) with v = F and in Fig. 4.27(c) with v = C) and when
the search backs up to v (as in Fig. 4.27(d) with v = B), since any vertex that can be
reached from a child of v can also be reached from v. Determiring which of two
vertices is farther back in the tree is easy: If v is a proper ancestor of w, l}?e’l
dfsNumber|[v] <dfsNumber[w]. Thus we can formulate the following rules for setting
back[v]:

1. When proceeding forward from v and a back edge vw is detected, back[v] =
min(back(v), dfsNumber[w])).

2. When backing up from w to v, back[v] := min(back[v), back[w)).

(These rules imply that hack|v] must be properly initialized; back[v] will initially be

assigned dfsNumber(v], but see Exercise 4.35.))

The condition tested to detect a bicomponent when backing up from w 0 1;
back[w] 2 dfsNumber(v]. (This condition is tested but not satisfied in Figs- 427

4.5/Biconnected Components of a Graph 187

/ \ /
|' D : \ 1/1 {
\ \\ \ ’ \
\ \L / \
G 0 O
I (D 22
\
\ L &) 414
G lﬁ Vertex labels for
331 | (b)—(g) are
[) 5/5 dfs Number/back.
\
\
‘ C) 614
() (b) (c)
The complete depth- Proceed forward; Continue forward.
first search tree. initialize values of back. Detect back edge CE;
Detect back edge FA; update back[C]
update back(F]
/
I
I
|
\
/
1
|
\
\
(d)
back|c (e) (" _ (g)
% backk dfsNumber[B] Forward to G and /; Back up to G updating Back up to B:
back(g UP to B updating detect back edge /B; back|G]; backlG] = back|B] = dfsNumber|E |;
I update back[l]; dfsNumber|B |, remove bicomponent.
remove bicomponent.

back[l)< dfsNumberlG].

Fi . N
(c:gture. 4.27 The action of the bicomponent algorithm on the graph in Fig. 4.25
ecting the first two bicomponents).

188 Graphs and Digraphs

and 4.27(c); it is satisfied in Figs. 4.27(f) ﬂ‘nd 4.27(g).) \}):/hen thf test lslsatlsﬁed‘)
1S an articulation point (except perhaps if v is the root of t c‘ trce;i z;actiomp e&? bicom.
ponent has been found and may be removed from ,further consideration. Whep, this
occurs, rule 2 above for resetting hack|v] may be skipped. . -

The problem of exactly when and how to t?sl fqr bicomponents is subtle but
critical to the correctness of an algorithm. (See fLXCfCISCS 4.37-4.39.) The essence
of the correctness argument is contained in the following theorem.

Theorem 4.3 In a depth-first search tree, a vertex v, other than the root, is an g
culation point if and only if v is not a leaf and some subtree of v has no back edge
incident with a proper ancestor of v.

Proof. Suppose that v, a vertex other than the root, is an articulation point. Then
there are vertices x and y such that v, x, and y are distinct and v is on every path from
X 10y. At least one of x and y must be a proper descendant of v, since otherwise there
wouid be a path between them using (undirected) edges in the tree without going
through v. Thus v is not a leaf. Now suppose every subtree of v has a back edge toa
proper ancestor of v; we claim that this contradicts the assumption that v is an artic-
ulation point. There are two cases: when only one of x and y is a descendant of v. and
when both are descendants of v. For the first case, paths between x and y that do not
use v are illustrated in Fig. 4.28. We leave the latter case as an exercise for the reader.

The remaining half of the proof is also left as an exercise. -

Theorem 4.3 does not tell us under what ¢
point. See Exercise 4.34.

We can now outline the work to be done in the depth-first search:

procedure BicompDFS(v: VertexType); { outline }
begin
number v and initialize back[v];
while there is an untraverseq edge vw
if w is unmarked then
BicompDFS(w);
{ Now backing uptov |
if back(w|> dfsNumber| v| then
outppt 4 new bicomponen; { the subtree rooted atw
and incident edges |;
else | haven'y found a pew bicomponem }
back(y) ;= min(hac'klvl,backlwl)
end { of backing Up from w oy |
else | wis already in (he tree
back|v] := min(d/I\'Numbe
end { of processing w |-
end { while }:
end { BicompDFS J

onditions the root is an articulation

incident with v do

riw], backle)

4.5/Biconnected Components of a Graph 189

Figure 4.28 Examples for the proof of Theorem 4.3.

The algorithm must keep track of the edges traversed during the search so that
those in one bicomponent can easily be identified and removed from further con-
sideration at the appropriate time. As the example in Fig. 4.27 illustrates, when a
bicomponent is detected, its edges are the edges most recently processed. Thus
edges are stacked on EdgeStack as they are encountered. When a bicomponent is
detected when backing up from, say, w to v, the edges in that bicomponent are the
edges from the top of EdgeStack down to (and including) vw. These edges may then
be popped.

Each adjacency list will be scanned exactly once, but every edge of G is in two
4djacency lists and is encountered twice. Stacking an edge the second time it is
tncountered can result in incorrect output— some edges may be put in two different
bicomponents. The algorithm avoids stacking edges that will cause this problem.

Algorithm 4.9 Biconnected Components
lﬁpuz_- G =(V, E), a connected graph (not directed) represented by linked adjacency
lists wign V={1,2,..., n).
Outpus. Lists of the edges in each biconnected component of G.
Procedure Bicomponents (adjacencyList: HeaderList; n: integer);
vVar
dfsNumber: array[VertexType] of integer;
back: array[VertexType) of integer;

190

Graphs and Digraphs

dfn: integer,

v: VertexType:

EdgeStack: Stack; _

{ We assume that Top is a function that returns the top item on g
stack (without popping it). |

procedure BicompDFS(v: VertexType),
var

w: VertexType,

ptr: NodePointer;

begin { BicompDFS |
{ Process vertex when first encountered. }
dfn = dfn+1,
dfsNumber|v] := dfn; back[v] := dfn;
ptr = adjacencyList[v],
while ptr #nil do
w = ptrT vertex;
if dfsNumber(w] <dfsNumber[v] then
push vw on EdgeStack
{ else wv was a backedge already examined }

end { if };
if dfsNumber[w] =0 { unmarked } then
BicompDFS(w);

{ Now backing up to v }
if back[w] > dfsNumber|[v] then
output a heading for a new bicomponent;
repeat
output Top(EdgeStack);
pop EdgeStack
until vw is popped;
else { haven’t found a new bicomponent |}
back|v] := min(back[v], back|w))
end { of backing up from w to 1 }
else { w is already in the tree }
back[v] = min(d[vNumber[wl. back|v))
end { of processing w |;
ptr = ptrT link;
end { while };
end { BicompDFS }

begin { Bicomponents |
for v:=1to ndo dfﬁs‘Numberlvl =0
dfn = 0;
BicompDFS(1)

end { Bicomponents }

4.6/
Strongly Connected Components of a Digraph 191

4.5.3 Analysis

As gsual, 7 f"/l and m= |E]. The initialization in Bicomponents includes ©(n)
Opgrations. BicompDFS is the depth-first search skeleton with appropriate processing
of vertices and edges .added. The depth-first search skeleton takes time in
@(max(n.m)) = ©(m). (Since G is connected, m>n—1.) Thus if the amount of pro-
cessing for.each vertex .and edge is bounded by a constant, the complexity of Bicom-
ponents is in ©@(m). It is easy to see that this is the case. The needed observation is
qontrivial only when the search backs up from w to v. Sometimes the repeat loop
popping edges‘ from E.dgeStaCk 1s executed, sometimes not, and the number of edges
popped each time varies. But each edge is stacked and popped at most twice (yes,

ome edges may be stacked when encountered from both directions), so overall the
amount of work done i1s 1n O(m).

The amount of space used is O(n+m).

4.5.4 Generalizations

The prefix “bi” means “two.” Informally speaking, a biconnected graph has two
vertex-disjoint paths between any pair of vertices (see Exercise 4.29). We can define
triconnectivity (and, in general, k-connectivity) to denote the property of having three
(in general, k) vertex-disjoint paths between any pair of vertices. An efficient algo-
rithm that uses depth-first search to find the triconnected components of a graph has
been developed (see the notes and references at the end of the chapter), but it 1s
much more complicated than the algorithm for bicomponents.

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

