
A4.4 Depth-first Search Trees
msdoes that lead to new, i.e., unmarked, vertices during a depth-first search of a aranh or digraph G fom a rooted tree called a depth-first search tree. If not all of iha vertices can be reached from the starting vertex (the root), then a complete raversal of G partitions the vertices into several trees. For an undirected graph, the search provides an orientation for each of its edges; they are oriented in the direction in which they are traversed. (If G is directed, its edges may be traversed only in the direction of their preassigned orientation.)

We say that a vertex V iS an ancestor of a vertex W in a tree if v is on the path
from the root to w; v is a proper ancestor of w if v#w. If v is a (proper) ancestor of
w. then w is a (proper) descendant of v.

An edge of G that is traversed from a vertex tO one of its ancestors in a depth
first search tree is called a back edge. If G is undirected, each of its edges will be a
tree edge or a back edge. If G is a digraph, depth-first scarcin partitions its edges into
Several classes: tree edges, back edges, edges that go from a vertex to one of its des
Cendants other than a child, and edges called cross edges between two vertices such
Ihat neither is a descendant of the other. See Fig. 4.24 for illustrations. Note that
the head and tail of a cross edge may be in two different trees. The reader should
prove that there can be no cross edges or descendant edges if G is undirected. The
distinctions between the various types of edges are important in some applications of
pin-'rst search in particular, in the algorithms studied in Sections 4.5 and 4.6.

*.4.5 A Generalized Depth-first Search Skeleton

ATst search provides the structure for many elegant and efticient algorithms.

..Pn-hrst search encOunters each vertex several times: when the vertex is first

Visited and becomes part of the depth-first search tree, then several more times when

he Search backs up to it and attempts to branch out in a ditferent direction., and

finally. last of these encounters, when the search backs up from the verteX
after the

and does not pass through it or any of its descendants again. Depending on the

182 Graphs and Digraphs

Tree edge

B

Back edge

var

(a)

(b)

To B

To G

Figure 4.24 (a) A digraph. (b) Depth-first search trees for the digraph.

procedure DFS (v: VertexType):

Cross edge Descendant edge

problem to be solved, an algorithm will process the vertices differently when they
are encountered at various stages of the traversal. Many algorithms will also do
some computation for the edges: perhaps for each edge, or perhaps only for edges in
the depth-first search tree, or perhaps different kinds of computation for the different
kinds of edges. The following skeleton algorithm shows exactly where the pro
cessing would be done for each kind of edge and for each kind of encounter with tne
vertices.

Algorithm 4.8 General Depth-first Search Skeleton

(D)

Input: G=(V,E), a graph or digraph represented by the adjacency list structu described in Section 4.1.2 with V= (1, 2,... , n).

mark: array[VertexType] of integer;
markValue: integer;

Does a depth-first search beginning at the vertex v, marking the vertices with markValue. }

var

W: VertexType;
ptr: NodePointer;

begin

Process verteX when fhrst encountered (like preorder).
mark[v] := markValue;

ptr := adjacencyList[v}:
while ptr # nil do

wi= ptrl.vertex:

| Processing for every edge.
(If G is undirected, each edge is encountered twice; an algorithm may have to distinguish the
two encounters.)

if mark[w] =0 { unmarked

DFS(w);

else

Processing for tree edges, vw. }

4.4/Traversing Graphs and Digraphs

{ Processing when backing up to v (like inorder) }

{ Processing for nontree edges.
(If G is undirected, an algorithm may have

parent of v.)

then

to distinguish the case where w is the

end { if };
ptr := ptrT.link

end while };

end DFS }

}

Processing when backing up from v (like postorder) }

183

For an exercise, the reader should write an algorithm to determine if a graph
(undirected) has a cycle. (This will require distinguishing between a nontree edge
and an encounter with a tree edge "backwards," i.e., from a vertex to its parent.)

In some applications of depth-first search, we may need to know which ver
hces are on the path from the root to the current vertex (V). They are exactly the ver
ices that are on the stack. For some algorithms we need to know the order in which
Verices are encountered for the first time. We can simply number the vertices as
uiey are encountered by incrementing markValue. The number assigned to a vertex
n this way is called its depth-first search number.

184

4.5

Graphs and Digraphs

Biconnected Components of
a Graph

4.5.1 Articulation Points and Biconnected Components
In Section 4.1 we raised these questions:

If one city's airport is closed by bad weather, can you still fiy between any
other pair of cities?

If one computer in a network goes down, can messages be sent between any

other pair of computers in the network?

In this section we consider undirected graphs only. As a graph problem, the question
is:

If any one vertex (and the edges incident with it) is removed from a connected
graph, is the remaining subgraph still connected?

This question is important in graphs representing all kinds of communication or
transportation networks. It is also important to find those vertices, if any, whose
removal can disconnect the graph.

Formally, a vertex v is an articulation point (also called a cutpoint) for a graph
if there are distinct vertices w and x (distinct from v also) such that v is in every path
from w to x. Clearly, the removal of an articulation point would leave an uncon
nected graph, so a connected graph is biconnected if and only if it has no articulation
points. A biconnected component of a graph is a maximal biconnected subgraph.
that is, a biconnected subgraph not contained in any larger biconnected subgraph.
Figure 4.25 illustrates biconnected components. Observe that, although the bicon
nected components partition the edges into disjoint sets, they do not partition the ver
tices: some vertices are in more than one component. (Which vertices are these?)

There is an alternative characterization of biconnected components, in tems of
an equivalence relation on the edges, that is sometimes useful. Two edges e and e
are equivalent if e=e'or if there is a cycle containing both e and e'. Then cach
subgraph consisting of the edges in one equivalence class and the incident vertices is
a biconnected component. (Verifying that the relation described is indeed an
equivalence relation and verifying that it characterizes the biconnected components
are left as exercises.)

The applications that motivate the study of biconnectivity should suggest
dual problem to the reader: how to determine if there is an edge whose removal

would disconnect a graph, and how to find such an edge if there is one.
example, if a railroad track is damaged, can trains still travel between any pair of st
tions? Relationships between the two problems are examined in Exercise 4.40.

The algorithm we will study for finding biconnected components uses
depth-first search skeleton of Section 4.4.5 and the idea of a depth-frst search tree

from Section 4.4.4. During the search, information will be computed and saved so

B

(a)

4.5/Biconnected Components of a Graph

tices

B

4.5.2 The Bicomponent Algorithm

E

at

(b)

Figure 4.25 (a) A graph. (b) Its biconnected components.

that the edges (and, implicitly, the incident vertices) can be divided into biconnected
components as the search progresses. What information must be saved? How is it
Used to determine the biconnected components? Several wrong answers to these
questions seem reasonable until they are examined carefully. Two edges are in the
same component if they are in a cycle, and every cycle must include at least one

back edge. The reader should work on Exercise 4.32 before proceeding: it requires
looking at a number of examples to determine relationships between back edges and
biconnected components.

From now on we will use the shorter term "bicomponent" in place of "bicon

nected component."

185

rrocessing of vertices may be done when a vertex is first visited, when the search
backs up to it, and/or when the search backs up from it. The bicomponent algorithm

Ests to see if a vertex in the tree is an articulation point each time the search backs

up to it. Suppose the search is backing up to v from w. If there is no back edge

Om any vertex in the subtree rooted at W to a proper ancestor of v, then v must be

O every path in G from the root to w and is therefore an articulation point. See Fig.

T0 tor illustration. (The careful reader will note that this argument is not valid if '

S ne root.) The subtree rooted at w, along with all back edges leading from it and
along with the edge Vw, can be separated from the rest of the graph at v, but it is not

necessarily one bicomponent; it may be a union of several. We ensure that bicom-

S are properly separated by removing each one as soon as it is detected. Ver

Lhe outer extremities of the tree are tested for articulation points before ver
ices closer to the root, ensuring that when an articulation point is found, the subtree

Graphs
and
Digraphs

186

O
ne

or
m

ore
bicom

ponents Figure

4.26

A
n

articulation

point
v in a depth-first

search

tree.

Every

path

from

the root
to

w

p
asses

through
v.

in

This

discussion

suggests

that
the

algorithm

must

keep

track
of how
far

back
in the

tree

one

can

get

from

each

vertex
by

follow
ing

tree

edges

(im
plicitly

directed

aw
ay

from

the

root)

and

certain

back

edges.

This

inform
ation

will
be

stored
in
an array

back.

The

vertices

will
be

num
bered

in

the

order
in

which

they

are

fhrst visited.

These

num
bers,

stored
in

an

array

dfsN
um

ber,

replace

the

m
arks

used
ear lier.

V
alues

of back

will
be

these

vertex

num
bers.

For
a vertex
v, back<v]

may
be assigned

(or

m
odified)

w
hen

the

search
is

going

forw
ard

and
a back

edge

from

IS encountered

(as
in

Fig.

4.27(b)

with
v =

F and
in

Fig,

4.27(c)

with

v
=

C) and

when

th
e

search

backs
up
to
v (as
in

Fig.

4.27(d)

with
v =

 B),

since

any

vertex

that

can
be

W
hen

proceeding

forw
ard

from

v and
a back

edge

yw

is detected,

back\V)
" m

in(back[v].
dfsNunm

ber[w).

W
hen

backing
up

from

w

to
v, back[v]
:=

m
in(back[v],

back[w]).

2.

from

W

to
' IS

(These

rules

im
ply

that

back<v]

must
be properly

initialized:

backl
vl

will

initialiy

assigned

dfsN
um

ber[v],
but

see

Exercise

4.35.) backlw
l

dfsN
um

ber[v].

(This

condition
is tested
but

not

satisfied
in

Figs.
4.2

The

condition

tested
to

detect

question

(along

w
ith

the

additional

edges

m
entioned

above).

form
s

one

bicom

ponent.
reached

from

a child
of v can

also
be

reached

from

v. D
eterm

iring

which
of (w

o vertices
is farther

back

in

th
e

tree
is

easy:
If
v is
a proper

ancestor
of

W,
e dfsN

um
ber[v]

<

dfsN
um

ber[w
].

Thus
we

can

form
ulate

the

follow
ing

rules
for

setting

back[v]:

bicom
ponent

when

backing
up

(a)

(E) 4

(d)

B

6

5

The complete depth
first search tree.

)4/4

I (B) 5/4

7

©)64

back|C]< dfsNumber[B] so back up to B updating back|B].

(b)

1/1

(e)

(D) 2/2

3/81

Proceed forward;
initialize values of back.
Detect back edge FA;
update back[F]

(B) 5/4

D8/5

4.5/Biconnected Components of a Graph 187

Forward to G and I;
detect back edge IB;
update back[/];
back[l] < dfsNumber[G].

(c)

(E) 4/4

(f)

5/5

C) 6/4

Continue forward.
Detect back edge CE;
update back[C]

I (BYS/4

8/5

Back up to G updating
back[G]; back[G]=
dfsNumber|B }:
remove bicomponent.

Vertex labels for

(b)-(g) are
dfs Numberlback.

(g)

E
4/4

B) 5/4

Back up to B;
back[B] = dfsNumnberlE):
remove bicomponent.

Figure 4.27 The action of the bicomponent algorithm on the graph in Fig. 4.25

(detecting the first two bicomponents).

188 Graphs and Digraphs

and 4.27(c): it is satisficd in Figs. 4.27(f) and 4.27(g).) When the test is satisfied,
is an articulation point (cxcept perhaps if v is the root of the tree): a complete bicom.

ponent has been found and may be removed from further consideration. When thi
occurs, rule 2 above for resetting back|v] may be skipped.

The problem of Cxactly when and how to test for biComponents is subtle h.
citical to the corectncss of an algorithm. (See Exercises 4.37-4.39.) The essence of the correctness argument is containcd in the following theorem.

Theorem 4.3 In a depth-first search tree, a vertex v, other than the root, is an ari

culation point if and only if v is not a leaf and some subtree of v has no back edoe
incident with a proper ancestor of v.

Proof. Suppose that v, a vertex other than the root, is an articulation point. Then
there are vertices x and y such that v, x, and y are distinct and v is on every path from
x to y. At least one of x and y must be a proper descendant of v, since otherwise there
would be a path between them using (undirected) edges in the tree without going
through v. Thus v is not a leaf. Now suppose every subtree of v has a back edge to a
proper ancestor of v; we claim that this contradicts the assumption that v is an artic
ulation point. There are two cases: when only one of x and y is a descendant of v. and
when both are descendants of v, For the first case, paths between x andy that do not use v are illustrated in Fig. 4.28. We leave the latter case as an exercise for the reader. The remaining half of the proof is also left as an exercise.

Theorem 4.3 does not tell us under what conditions the root is an articulation point. See Exercise 4.34.
We can now outline the work to be done in the depth-first search:
procedure BicompDFS(v: VertexType); { outline begin

number v and initialize back[vl:
while there is an untraversed edge vw incident with v do if w is unmarked then

BicompDFS(w);
Now backing up to v } if back<w]2 dfsNumberlv] then output a new bicomponent the subtree rooted at w and incident edges ; else haven't found a new bicomponent) back<v) := min(back<v\, back<w) end of backing up from w to v } else w is already in the tree } back<v) := min(dfsNumber<w], back[vl) end { of processing w }: end while);

end { BicompDFS }

4.5/Biconnected Components of a Graph

Figure 4.28 Examples for the proof of Theorem 4.3.

The algorithm must keep track of the edges traversed during the search so that
those in one bicomponent can easily be identified and removed from further con
SIderation at the appropriate time. As the example in Fig. 4.27 illustrates, when a
bicomponent is detected, its edges are the edges most recently processed. Thus
edges are stacked on EdgeStack as they are encountered. When a bicomponent is
detected when backing up from, say, w to v, the edges in that bicomponent are the
edges from the top of EdgeStack down to (and including) vw. These edges may then
be popped.

Each adjacency list will be scanned exactly once, but every edge of G is in two
djacency lists and is encountered twice. Stacking an edge the second time it is
éhcountered can result in incorrect output some edges may be put in two different

Algorithmn 4.9 Biconnected Components

lIsts with V=|1.2,... , n.
Input: G= (V, E), a connected graph (not directed) represented by linked adjacency

Output: Lists of the edges in each biconnected component of G.

Var

189

procedure Bicomponents (adjacencyList: HeaderList, n: integer):

dfsNumber: array[VertexType] of integer;
back: array[VertexType] of integer;

Oicomponents. The algorithm avoids stacking edges that will cause this problem.

190 Graphs and Digraphs

dfn: integer:

var

v: VertexType:
EdgeStack: Stack;
{ We assume that Top is a function that returns the top item on a

stack (without popping it).

procedure BicompDFS(y: VertexType):

w: VertexType:
ptr: NodePointer;

begin { BicompDFS)
{ Process vertex when first encountered. }

dfn := dfin+1:
dfsNumber[v] := dfn; back[v]:= dfn;
ptr := adjacencyList[v];
while ptr # nil do

end

w := ptrT.vertex;

begin

if dfsNumber[w] <dfsNumber[v] then
push vw on EdgeStack
{ else wv was a backedge already examined }

end { if };
if dfsNumber[w] =0 { unmarked then

BicompDFS(w):
{ Now backing up to v }

if back[w] > dfsNumberlv] then
output a heading for a new bicomponent;
repeat

until vw is popped;
else haven't found a new bicomponent }

back<v] := min(back[v], back<w})

output Top(EdgeStack);
pop EdgeStack

end of backing up from w to v}
else w is already in the tree

back<v] := min(dfsNumber[w], back<v) end of processing w }:
ptr i= ptrT.link:

while }:

dfin := 0;

end (BicompDFS }

Bicomponents }
for v := 1 to n do dfsNumberlv] := 0;

BicompDFS(1)
end { Bicomponents }

A.5.3 Analysis

4.6/Strongly Connected Components of a Digraph

As usual, n=b| and m =|E|. The initialization in Bicomponents includes (n)
operations. BicompDFS is the depth-first search skeleton with appropriate
of vertices and edges added. The depth-first search skeleton takes time in

O(max(n, m)) =

cessing

)= (m). (Since G is connected, m>n-1.) Thus if the amount of pro
for each vertex and edge is bounded by a constant, the complexity of Bicomn

in (m). It is easy to see that this is the case. The needed observation is
nontrivial only when the search backs up from w to v. Sometimes the repeat loop
popping edges from EdgeStack is executed, sometimes not, and the number of edges
anned each time varies. But each edge is stacked and popped at most twice (yes,

191

The amount of space used is (n+m).

4.5.4 Generalizations

processing

The prefix "bi" mneans "two." Informally speaking, a biconnected graph has two
vertex-disjoint paths between any pair of vertices (see Exercise 4.29). We can define

triconnectivity (and, in general, k-connectivity) to denote the property of having three

(in general, k) vertex-disjoint paths between any pair of vertices. An efficient algo
rithm that uses depth-first search to find the triconnected components of a graph has

been developed (see the notes and references at the end of the chapter), but it is

much more complicated than the algorithm for bicomponents.

ome edges may be stacked when encountered from both directions), so overall the
amount of work done is in O(m).

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

