
A4.4 Depth-first Search Trees 
msdoes that lead to new, i.e., unmarked, vertices during a depth-first search of a aranh or digraph G fom a rooted tree called a depth-first search tree. If not all of iha vertices can be reached from the starting vertex (the root), then a complete raversal of G partitions the vertices into several trees. For an undirected graph, the search provides an orientation for each of its edges; they are oriented in the direction in which they are traversed. (If G is directed, its edges may be traversed only in the direction of their preassigned orientation.) 

We say that a vertex V iS an ancestor of a vertex W in a tree if v is on the path 
from the root to w; v is a proper ancestor of w if v#w. If v is a (proper) ancestor of 
w. then w is a (proper) descendant of v. 

An edge of G that is traversed from a vertex tO one of its ancestors in a depth 
first search tree is called a back edge. If G is undirected, each of its edges will be a 
tree edge or a back edge. If G is a digraph, depth-first scarcin partitions its edges into 
Several classes: tree edges, back edges, edges that go from a vertex to one of its des 
Cendants other than a child, and edges called cross edges between two vertices such 
Ihat neither is a descendant of the other. See Fig. 4.24 for illustrations. Note that 
the head and tail of a cross edge may be in two different trees. The reader should 
prove that there can be no cross edges or descendant edges if G is undirected. The 
distinctions between the various types of edges are important in some applications of 
pin-'rst search in particular, in the algorithms studied in Sections 4.5 and 4.6. 

*.4.5 A Generalized Depth-first Search Skeleton 

ATst search provides the structure for many elegant and efticient algorithms. 

..Pn-hrst search encOunters each vertex several times: when the vertex is first 

Visited and becomes part of the depth-first search tree, then several more times when 

he Search backs up to it and attempts to branch out in a ditferent direction., and 

finally. last of these encounters, when the search backs up from the verteX 
after the 

and does not pass through it or any of its descendants again. Depending on the 
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To B 
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Figure 4.24 (a) A digraph. (b) Depth-first search trees for the digraph. 

procedure DFS (v: VertexType): 

Cross edge Descendant edge 

problem to be solved, an algorithm will process the vertices differently when they 
are encountered at various stages of the traversal. Many algorithms will also do 
some computation for the edges: perhaps for each edge, or perhaps only for edges in 
the depth-first search tree, or perhaps different kinds of computation for the different 
kinds of edges. The following skeleton algorithm shows exactly where the pro 
cessing would be done for each kind of edge and for each kind of encounter with tne 
vertices. 

Algorithm 4.8 General Depth-first Search Skeleton 

(D) 

Input: G=(V,E), a graph or digraph represented by the adjacency list structu described in Section 4.1.2 with V= (1, 2,... , n). 

mark: array[VertexType] of integer; 
markValue: integer; 

Does a depth-first search beginning at the vertex v, marking the vertices with markValue. } 



var 

W: VertexType; 
ptr: NodePointer; 

begin 

Process verteX when fhrst encountered (like preorder). 
mark[v] := markValue; 

ptr := adjacencyList[v}: 
while ptr # nil do 

wi= ptrl.vertex: 

| Processing for every edge. 
(If G is undirected, each edge is encountered twice; an algorithm may have to distinguish the 
two encounters.) 

if mark[w] =0 { unmarked 

DFS(w); 

else 

Processing for tree edges, vw. } 

4.4/Traversing Graphs and Digraphs 

{ Processing when backing up to v (like inorder) } 

{ Processing for nontree edges. 
(If G is undirected, an algorithm may have 

parent of v.) 

then 

to distinguish the case where w is the 

end { if }; 
ptr := ptrT.link 

end while }; 

end DFS } 

} 

Processing when backing up from v (like postorder) } 
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For an exercise, the reader should write an algorithm to determine if a graph 
(undirected) has a cycle. (This will require distinguishing between a nontree edge 
and an encounter with a tree edge "backwards," i.e., from a vertex to its parent.) 

In some applications of depth-first search, we may need to know which ver 
hces are on the path from the root to the current vertex (V). They are exactly the ver 
ices that are on the stack. For some algorithms we need to know the order in which 
Verices are encountered for the first time. We can simply number the vertices as 
uiey are encountered by incrementing markValue. The number assigned to a vertex 
n this way is called its depth-first search number. 



184 

4.5 

Graphs and Digraphs 

Biconnected Components of 
a Graph 

4.5.1 Articulation Points and Biconnected Components 
In Section 4.1 we raised these questions: 

If one city's airport is closed by bad weather, can you still fiy between any 
other pair of cities? 

If one computer in a network goes down, can messages be sent between any 

other pair of computers in the network? 

In this section we consider undirected graphs only. As a graph problem, the question 
is: 

If any one vertex (and the edges incident with it) is removed from a connected 
graph, is the remaining subgraph still connected? 

This question is important in graphs representing all kinds of communication or 
transportation networks. It is also important to find those vertices, if any, whose 
removal can disconnect the graph. 

Formally, a vertex v is an articulation point (also called a cutpoint) for a graph 
if there are distinct vertices w and x (distinct from v also) such that v is in every path 
from w to x. Clearly, the removal of an articulation point would leave an uncon 
nected graph, so a connected graph is biconnected if and only if it has no articulation 
points. A biconnected component of a graph is a maximal biconnected subgraph. 
that is, a biconnected subgraph not contained in any larger biconnected subgraph. 
Figure 4.25 illustrates biconnected components. Observe that, although the bicon 
nected components partition the edges into disjoint sets, they do not partition the ver 
tices: some vertices are in more than one component. (Which vertices are these?) 

There is an alternative characterization of biconnected components, in tems of 
an equivalence relation on the edges, that is sometimes useful. Two edges e and e 
are equivalent if e=e'or if there is a cycle containing both e and e'. Then cach 
subgraph consisting of the edges in one equivalence class and the incident vertices is 
a biconnected component. (Verifying that the relation described is indeed an 
equivalence relation and verifying that it characterizes the biconnected components 
are left as exercises.) 

The applications that motivate the study of biconnectivity should suggest 
dual problem to the reader: how to determine if there is an edge whose removal 

would disconnect a graph, and how to find such an edge if there is one. 
example, if a railroad track is damaged, can trains still travel between any pair of st 
tions? Relationships between the two problems are examined in Exercise 4.40. 

The algorithm we will study for finding biconnected components uses 
depth-first search skeleton of Section 4.4.5 and the idea of a depth-frst search tree 

from Section 4.4.4. During the search, information will be computed and saved so 
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4.5/Biconnected Components of a Graph 

tices 

B 

4.5.2 The Bicomponent Algorithm 

E 

at 

(b) 

Figure 4.25 (a) A graph. (b) Its biconnected components. 

that the edges (and, implicitly, the incident vertices) can be divided into biconnected 
components as the search progresses. What information must be saved? How is it 
Used to determine the biconnected components? Several wrong answers to these 
questions seem reasonable until they are examined carefully. Two edges are in the 
same component if they are in a cycle, and every cycle must include at least one 

back edge. The reader should work on Exercise 4.32 before proceeding: it requires 
looking at a number of examples to determine relationships between back edges and 
biconnected components. 

From now on we will use the shorter term "bicomponent" in place of "bicon 

nected component." 

185 

rrocessing of vertices may be done when a vertex is first visited, when the search 
backs up to it, and/or when the search backs up from it. The bicomponent algorithm 

Ests to see if a vertex in the tree is an articulation point each time the search backs 

up to it. Suppose the search is backing up to v from w. If there is no back edge 

Om any vertex in the subtree rooted at W to a proper ancestor of v, then v must be 

O every path in G from the root to w and is therefore an articulation point. See Fig. 

T0 tor illustration. (The careful reader will note that this argument is not valid if ' 

S ne root.) The subtree rooted at w, along with all back edges leading from it and 
along with the edge Vw, can be separated from the rest of the graph at v, but it is not 

necessarily one bicomponent; it may be a union of several. We ensure that bicom-

S are properly separated by removing each one as soon as it is detected. Ver 

Lhe outer extremities of the tree are tested for articulation points before ver 
ices closer to the root, ensuring that when an articulation point is found, the subtree 
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back|C]< dfsNumber[B] so back up to B updating back|B]. 

(b) 

1/1 

(e) 

(D) 2/2 

3/81 

Proceed forward; 
initialize values of back. 
Detect back edge FA; 
update back[F] 

(B) 5/4 

D8/5 
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Forward to G and I; 
detect back edge IB; 
update back[/ ]; 
back[l ] < dfsNumber[G ]. 

(c) 

(E) 4/4 

(f) 

5/5 

C) 6/4 

Continue forward. 
Detect back edge CE; 
update back[C] 

I (BYS/4 

8/5 

Back up to G updating 
back[G ]; back[G ]= 
dfsNumber|B }: 
remove bicomponent. 

Vertex labels for 

(b)-(g) are 
dfs Numberlback. 

(g) 

E 
4/4 

B) 5/4 

Back up to B; 
back[B ] = dfsNumnberlE ): 
remove bicomponent. 

Figure 4.27 The action of the bicomponent algorithm on the graph in Fig. 4.25 

(detecting the first two bicomponents). 
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and 4.27(c): it is satisficd in Figs. 4.27(f) and 4.27(g).) When the test is satisfied, 
is an articulation point (cxcept perhaps if v is the root of the tree): a complete bicom. 

ponent has been found and may be removed from further consideration. When thi 
occurs, rule 2 above for resetting back|v] may be skipped. 

The problem of Cxactly when and how to test for biComponents is subtle h. 
citical to the corectncss of an algorithm. (See Exercises 4.37-4.39.) The essence of the correctness argument is containcd in the following theorem. 

Theorem 4.3 In a depth-first search tree, a vertex v, other than the root, is an ari 

culation point if and only if v is not a leaf and some subtree of v has no back edoe 
incident with a proper ancestor of v. 

Proof. Suppose that v, a vertex other than the root, is an articulation point. Then 
there are vertices x and y such that v, x, and y are distinct and v is on every path from 
x to y. At least one of x and y must be a proper descendant of v, since otherwise there 
would be a path between them using (undirected) edges in the tree without going 
through v. Thus v is not a leaf. Now suppose every subtree of v has a back edge to a 
proper ancestor of v; we claim that this contradicts the assumption that v is an artic 
ulation point. There are two cases: when only one of x and y is a descendant of v. and 
when both are descendants of v, For the first case, paths between x andy that do not use v are illustrated in Fig. 4.28. We leave the latter case as an exercise for the reader. The remaining half of the proof is also left as an exercise. 

Theorem 4.3 does not tell us under what conditions the root is an articulation point. See Exercise 4.34. 
We can now outline the work to be done in the depth-first search: 
procedure BicompDFS(v: VertexType); { outline begin 

number v and initialize back[vl: 
while there is an untraversed edge vw incident with v do if w is unmarked then 

BicompDFS(w); 
Now backing up to v } if back<w]2 dfsNumberlv] then output a new bicomponent the subtree rooted at w and incident edges ; else haven't found a new bicomponent ) back<v) := min(back<v\, back<w) end of backing up from w to v } else w is already in the tree } back<v) := min(dfsNumber<w], back[vl) end { of processing w }: end while ); 

end { BicompDFS } 
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Figure 4.28 Examples for the proof of Theorem 4.3. 

The algorithm must keep track of the edges traversed during the search so that 
those in one bicomponent can easily be identified and removed from further con 
SIderation at the appropriate time. As the example in Fig. 4.27 illustrates, when a 
bicomponent is detected, its edges are the edges most recently processed. Thus 
edges are stacked on EdgeStack as they are encountered. When a bicomponent is 
detected when backing up from, say, w to v, the edges in that bicomponent are the 
edges from the top of EdgeStack down to (and including) vw. These edges may then 
be popped. 

Each adjacency list will be scanned exactly once, but every edge of G is in two 
djacency lists and is encountered twice. Stacking an edge the second time it is 
éhcountered can result in incorrect output some edges may be put in two different 

Algorithmn 4.9 Biconnected Components 

lIsts with V=|1.2,... , n. 
Input: G= (V, E), a connected graph (not directed) represented by linked adjacency 

Output: Lists of the edges in each biconnected component of G. 

Var 
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procedure Bicomponents (adjacencyList: HeaderList, n: integer): 

dfsNumber: array[ VertexType] of integer; 
back: array[VertexType] of integer; 

Oicomponents. The algorithm avoids stacking edges that will cause this problem. 
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dfn: integer: 

var 

v: VertexType: 
EdgeStack: Stack; 
{ We assume that Top is a function that returns the top item on a 

stack (without popping it). 

procedure BicompDFS(y: VertexType): 

w: VertexType: 
ptr: NodePointer; 

begin { BicompDFS ) 
{ Process vertex when first encountered. } 

dfn := dfin+1: 
dfsNumber[v] := dfn; back[v]:= dfn; 
ptr := adjacencyList[v]; 
while ptr # nil do 

end 

w := ptrT.vertex; 

begin 

if dfsNumber[w] <dfsNumber[v] then 
push vw on EdgeStack 
{ else wv was a backedge already examined } 

end { if }; 
if dfsNumber[w] =0 { unmarked then 

BicompDFS(w): 
{ Now backing up to v } 

if back[w] > dfsNumberlv] then 
output a heading for a new bicomponent; 
repeat 

until vw is popped; 
else haven't found a new bicomponent } 

back<v] := min(back[v], back<w}) 

output Top(EdgeStack); 
pop EdgeStack 

end of backing up from w to v} 
else w is already in the tree 

back<v] := min(dfsNumber[w], back<v) end of processing w }: 
ptr i= ptrT.link: 

while }: 

dfin := 0; 

end ( BicompDFS } 

Bicomponents } 
for v := 1 to n do dfsNumberlv] := 0; 

BicompDFS(1) 
end { Bicomponents } 



A.5.3 Analysis 

4.6/Strongly Connected Components of a Digraph 

As usual, n=b| and m =|E|. The initialization in Bicomponents includes (n) 
operations. BicompDFS is the depth-first search skeleton with appropriate 
of vertices and edges added. The depth-first search skeleton takes time in 

O(max(n, m)) = 

cessing 

)= (m). (Since G is connected, m>n-1.) Thus if the amount of pro 
for each vertex and edge is bounded by a constant, the complexity of Bicomn 

in (m). It is easy to see that this is the case. The needed observation is 
nontrivial only when the search backs up from w to v. Sometimes the repeat loop 
popping edges from EdgeStack is executed, sometimes not, and the number of edges 
anned each time varies. But each edge is stacked and popped at most twice (yes, 
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The amount of space used is (n+m). 

4.5.4 Generalizations 

processing 

The prefix "bi" mneans "two." Informally speaking, a biconnected graph has two 
vertex-disjoint paths between any pair of vertices (see Exercise 4.29). We can define 

triconnectivity (and, in general, k-connectivity) to denote the property of having three 

(in general, k) vertex-disjoint paths between any pair of vertices. An efficient algo 
rithm that uses depth-first search to find the triconnected components of a graph has 

been developed (see the notes and references at the end of the chapter), but it is 

much more complicated than the algorithm for bicomponents. 

ome edges may be stacked when encountered from both directions), so overall the 
amount of work done is in O(m). 
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